. ' REPORT C | .

DEFLECTIONS OF A SUPERSONIC
WING DUE TO AERODYNAMIC
HEATING

by Richard W. Luce Jr.

D.1.C. Project Number 6553
US.Air Force Contract Number W33-038 ac-17239
JUNE {1949

AD-A278 113
(e

R law aulBi2

o LBELETD
{ BaSA-hobo

N

. &
rd

b
S
P
-

:""v"“ e
[P -
i 2o o '\’#., :

94-09928
MEAnRY

RN -

R T e i

L N R s A s W5
~ .

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DIVISION OF INDUSTRIAL COOPERATION
CAMBRIDGE . MASSACHUSETTS

ia
n
&
[ %




DISCLAIMER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




u- 12 £

REPORT C

DEFLECTIONS OF A SUPERSONIC WING
DUE TO AERODYNAMIC HEATING

by
RICHARD W, LUCE, JR.

For the U, S. Air Force under
Contract W33=038 ac=17239
D.I.C. Project No. 6553

June 1, 1949

DIVISION OF INDUSTRIAL COOPERATION
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS




_—

EREFACE
This report is one of a series which is the result of a joint

undertaking of the Departments of Aeronautical Engineering, under
the supervision of Professors J. S. Newell and H. S. Tsien, and of
Mechanical Engineering, under the supervision of Professors J. Kaye
and W, M. Rohsenow, at the Massachusetts Institute of Technology for
the U, S. Air Forces under Contract No. W33-03€ ac-17239. The work
was performed in the Division of Industrial Cooperation as projects
DIC €553 and DIC 6580, The work began in October, 1947 and extended
to June, 1949.

Since the basic problems relating to the thermal effects in a
structure moving at superscnic speeds are relatively new and unsolved,
the major efforts in this study were of an exploratory nature., Rather
than attempting to cover a large number of different structures, it

was deemed advisable to select a particular case, namely that of a

thin wedge=-shape winé travelling at supersonic speeds, and to dis-
cover the basic problems which must be solved in order to design such
a structure safely. Even for this particular case only the more im-
portant variables could be examined in the time available.
The problem was divided into the following four parts:
a. The determination of the temperature distribution in the
wedge-shape wing. The results are given in Report A.
b. The thermal stresses in the wing caused by this non-
uniform distribution. The results are given in Report B.
¢. The effects of this temperature distribution on the aero-
dynamic behavior of the wing. The results are given in
Report C.
. , d. A search of the literature in order to discover any previous

.work in this field. The results are given in Report D.

I




SUMMARY
In this report, a study is made of the deflections of a

wing due to serodynamic heating, and the effects of these deflectiomns
on the aerodynamic performance of the wing. The temperature distribu-
tion used is that calculated in Report A of this series by a method

of finite differences. A different approach to the heat transfer
problem is suggested in an Appendix to this gfgort._ for the anio of
simplicity, the wing which is considered is a flat rectangular plate
of constant thickness. However, methods of generalizing the procedure
to 801id wings of variable thickness are indicated.

The analysis is based upon a strain energy procedure rather
than a solution of the differential equations of thermo-elasticity.

In this procedure, it was found necessary to take into account the
coupling of stresses in the plane of the plate with transverse deflec-
tions of the plate.

Results are given in tabular and graphical form, and show
that in general the effect of these deflections is not large. The
principal aerodynamic effect is an increase in drag coefficient. How-
ever all of these calculations are based upon a Mach number of six,
and thus at smaller Mach rnumbers, the deflections will dofinitely‘_“

not reach serious proportions. Acgession For [
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INIRCRUCTION

As shown by the results of calculations in the previous reports
of this series, non-uniform heating by rapid acceleration to supersonic
speeds in dense atmosphere leads to very large thermal stresses in the
material. These thermal stresses are caloculated on the assumption that
the dimensions of the wing are infinitely large. If the dimensions of
the wing are finite, there will be some release of stresses due to the
effects of free edges. To determine this effect is part of the aim of
this report. However, since the material will be assumed to be completely
elastic, while plasticity of the material must necessarily appear at the
high prevailing temperature, the magnitude of the stresses so calculated
cannot be considered as quantitative. The main purpose of the present
study is rather the determination of the deformation of the wing due to
aerodynamic heating. As will be seen later, the deformation is indepen-
dent of the value of Young's modulus and is only a function of the tem=
perature distribution and the thermal coefficient of expansion of the
material. Therefore, the appearance of plasticity at high temperature
and the resultant changes in the effective elastic modulus, will not
essentially modify the calculated results on deformation. Hence, the
assumption of complete elasticity is justified for the calculation of
the deformation of the wing.

Specifically then, this report attempts to obtain s first
order estimate of the transverse deflection of a cantilever wing caused
by the thermal stresses set up by a transient temperature distribution.
The wing is assumed to be accelerated at a constant rate starting at a
Mach number of 1.4. The acceleration is assumed to occur at constant
altitude and constant wing loading. The angle of attack is thus deter-
mined to maintain this constant wing loading during the period of accel-
eration. During this period of acceleration there is heat transfer from
the air into the wing, producing a temperature distribution as a function
of time, This temperature distribution has been calculated for a partic-
ular set of conditions by a method of finite differences as given in Report
A of this series and it is this temperature distribution which will be used
in the following work, *

To calculate the deformation and the stresses with a given tem-
perature distribution, one can proceed by either of two ways: 1) To
solve the exact equilibrium equations and the equation of compatibility;
2) To use the energy method. This first method 1s more exact but the
labor involved in actual computation is prohibitive for the case of a
cantilever wing. The second method will thus be used. This method has
the advantage of being flexible and can be adapted without any difficulty
to wings with arbitrary thickness variation. For the detailed analysis
given below, the thickness of the wing is assumed to be constant to sim-
plify the calculation. This is believed to be justified for the present
study, as the aim is to obtain a first order estimate of the deformation
rather than the exact numerical value.

#In an Appendix to the present Report, an alternate method based upon the
Laplace Transform will be presented.




1) C‘ ® local drag coefficient
2) Cl = local 1lift coefficient
3) C,,,,~ s local moment coefficient

@
4) Cyp = ﬁt = pressure coefficient

5) D = BB _ . plate bending stiffness

2 (1-v2)
6) E = Young's Modulus of Elasticity
S -
7 G = 2(1+y)
8) W = plate thickness
9 ,Q. = semichord
10) L. = semispan
11) () = Laplace transform of ( )

12) N,=h0} = force in x-direction per foot

13) N‘a\\ & = force in y-direction per foot

14) Nxy = h Tyy = shear load per foot

15) R= L/L

16) S = ‘VL_

17) T = temperature

18) Tww = temperature averaged with respect of Z
19) w. = displacement in the x-direction

20) «~~ g.displacement in the y-direction

21) \/ = potential energy

2) wr
23) W s strain energy function

displacement in the Z direction

24) %X = gpanwise coordinate

25) ¢ = chordwise coordinate
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26) Z = transverse coordinate
27) oL = linear thermal coefficient of expansion
28) Ygy = shearing strain
- 29) €, = tensile strain in the x-direction
. 30) . €4 = tensile strain in the y-direction
M N =W
32) @ = time
33) ¥V = Poisson's ratio
34) % = x/|__
35) 1Y = strain energy of a flat plate

36) 1Y, = strain energy due to bending stresses
37) 1V, = strain energy due to plane stresses
32) Ox = tensile stress in the x-direction
39) 0% = tensile stress in the y-direction
. 40) Tiy= shearing stress
41) T = thickness ratio = “/&2
42) ¢ = Airy's stress function
FORMULATION OF THE PROBLEM

The coordinate system and dimensions to be used in the analysis are
as shown in Figure 1. The followi.g set of non-dimensional parameters will
also be used in the analysis.

R=L/_Q ) S="/\_

(%)
"‘x/l_o 1= 5/2

The results of the finite difference procedure indicate* that the
temperature distribution at any instant can be approximated quite closely by
an expression of the following form, where ~T"(,%,72) is the local temper-
ature at the point (x, },2) above the uniform temperature before heating.

Tix,8,2)= A9 + BnE + CeO@E) (2)

*See Report C
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The coefficlents A, B, and C are only functions of the span~-wise coordinate y.
The influence of the wing tips on the temperature distribution is thus neglected.

From this expression, it is easily seen that A, B, and C have the fol-
lowing significance.

Ay =T
Bl = T,, vy = Taeowa (3)

cuy =2[m., -+ ‘\"..-w,] — 4 T

It is also found convenient to define the mean temperature as:

Wa,
T.=1 S ;:'d.'z. = Al + Cnlg “)

The deflections of a wing are mainly due to the bending of the wing
surface. But bending is the result of the difference in expansion or the
difference in temperature of the material at the top and the bottom surfaces.
If this is true, then only the linear term ®{¢) %/, in the temperature dis-
tribution will influence the deflections. However, this 1s not true: Due to
the non-uniformity of the mean temperature defined in (4), there is rather
large stretching and compression of the median surfuce, lying half-way between
the top and the bottom surfaces. The stretching and compression of the median
surface yield an average tensile or compressive stress in the wing. These are
the stresseé in the plane of the wing. Such stresses will influence the bend-
ing of the wing through coupling effects. Therefore, to calculate the deflec-
tion of the wing, the procedure can be divided into two steps:

1) Calculate the average or plate stresses
2) Calculate the bending with the coupling effects of the plate
stresses.
These steps will be treated separately in the following sections.
PLATE STRESUE

Let

Ex = tensile strain in the x-direction
E': tensile strain in the y-direction

8,,- shearing strain

Oy = tensile stress in the x~direction

Oy = tensile stress in the y-direction
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't‘.‘: shearing stress
E = Young's modulus
Y = Poisson's ratio

o€ = linear thermal expansion coefficient.
Then the relations between the strain and stress are:

G2t -vq) + « T

€y =50y — v&:) + « T (s)
by = 2R Ty

The equilibrium equations are:

(6)
Ry r XY
. x T S¢=°
. In addition, the compatibility equations become:
8
d3* €4 » €y ) X;;

Combining the stress-strain equations and the compatibility equation:
' * N T
%?(“;—V%) - -‘-;;(o;-va:.) +Eo VT = 2(1+V) W;': (8)

But differentiating the equilibrium equations with respect to x and ¥y respec-
tively, and adding:

e 6 * 6
253 =—(53 53 o)
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Hence by eliminating “Uyy, between (8) and (9):

L § ( L 8 L N
Ye-v I8+ Y% v 5% rexwn

=(\ -o-V)(-— i;g% — 3;%*) (\o)

or: V"(OQ*G‘):—E&V" Tom q}))

Now introduce the stress function ¢ defined by:

“ —‘l- -—3‘-
°'*'"'T-$‘1 73‘3_35'7 Tay = 'ﬁ%; \e)

(\1) becomes:

TVt d = - E& VF T, Ga)

Thus the differential equation (\3) must be solved subject to the
boundary conditions of zero normal and shear stress on the free edges. The
. supported end of the plate is assumed to be free to displace in the y-direc-
tion. Tha same boundary conditions are satisfied if the cantilever plate is
considered as one half of a rectangular plate free at all edges. Thus for

convenience, the cantilever plate is replaced by an equivalent free plate of
’ twice the length, as shown in Figure 2.

The boundary conditions become:

At ‘:tl, ¢’,‘.= ¢“-;'=O
(14)
A particular solution to equation (1) is:
¢,=—Ed“‘l’“ dydy (15)

’ Then: Prxy = Ppxx = ©

¢f3‘, = -5« Tm.
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The problem is thus reduced to that of finding a homogeneous solu=-
tion to the equation:

v*vt*e, =0 (\e)

With the boundary conditions:
At x=xbL, Gy =0

¢Hu‘ = - ¢ru = EX T )]

At 4=xL, ¢nx‘ = ¢wut = O

But this system is identical with that of finding the stress dis-
tribution in a plate loaded as shown in Figure ® .,

LUTION OF THE P RESS PRO

This problem can be solved by a strain energy procedure developed
for plane stress. The problem is equivalent to that of finding a function ¢,
which satisfies the boundary conditions and minimiges the integral: *

' V=3 (T (b + (0und* + 2 (60} ax s ue)

? A solution is assumed in the form,

¢, -auSS'r..a,J.-, a (2= (q=)* [«. + %y % u,wﬂ 7))

where the ™ ; are undetermined coefficients.

It can easily be seen that this function automatically satisfies the
boundary conditions, and hence it is only necessary to minimize the strain
energy. It is assumed that the mean temperature can be expressed in a power
series as given below:

L)

'T‘mr-f. 'bv\"\w

neo

#See for instance: Timoshenko, "Theory of Elasticity", McGraw-Hill, pp. 151.
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Substituting these expressions into the expression for strain energy,
there follows:

evatfftecmyayan +ﬂzeu"x to b Oeem@F - &
+ & (el - 25 + ()32 - %s)‘_\

+loer® + 5 338" +10.42) + [2171R* . saiRY

+4.48)u + (581 R* +1.962 R* +.936]«?

+0.832RY v a8\, x, (21)

where R is the "aspect ratio"

But the minimizing conditions are that:

a(REY) _ o

3¢

Qv

(]
*3 —-R* Lo &
EXL* 19.9R* 1 2.68R" +1.867 Z;("C""Xﬂ*‘ "”'") tn

o 3
[19.5R* + n.uR® +10.55] 52 +[1773R* + 138 ¢) T

=-R Z(H'L-W"\ "+ ‘h#l)t

"wie

Ez.«-zR“'». 3.'1'75'1 Fﬁta. +[z..e4:r R* + 6.57R* + 58 5_‘%5@_

=~ R‘-i(w(-v)“)(#i’a - ﬁ':) L% (22)

b3 3
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le, the wing whose temperature distribution was calcu-

lated before by the finite difference method,* will be analyzed. This wing
has a thickness h of 0.22 ft. and a semi-chord £ of 2.75 ft. The thick-
ness ratio is thus 8%. uhe wing is loaded to 100 1lbs. per square foot and
is accelerated at 50,000 ft. altitude from Mach number 1.4 to Mach number 6

. at 1 Mach number every 30 seconds. The calculated temperatur- distribution
at Mach number 6 is given in Report A. Expressing this temperature distribu-
tion as a polynomial as expressed by (20), the following coefficients are
determined:

te = 317

€, =2.184.2

.3 252

ty = 765 (23)
t4 = 2135

2638

ot
[
"

o
4
"

0

~2057

e
4
n

Using a value of R = 3, the three equations become:

Xa

Ex\> =-3,22

ma%&-\} + 154.9 gk = - 45,500

% -—

whose solutions are:

u F—
?.-‘I‘-.;- 3.22

N
-ﬁlr_'.,--ls.S' (2.4)
o
. —J_EN\: -654

*In an Appendix to the present Report, an alternate method based upon the
Laplace transform will be presented.
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Using those values, the stress function becomes:
¢= 49, + 9,
. = EX* (Y- 0*(*-)*[19.5 - 65.4%*— 3.227] (25)

The stresses then are,
. ‘l
s X =i S
= Ex R*{ 81(1=0)(V*=1)* (~2.22)

+02 '~ 4XY - )2 (-19.5- 654 's"-'s.z.zn)} (2.6)
=38
= :x%\*.u‘m‘-n"(-\a-. )+ L) =) (-1 20. 8 )
+02Y - A)(MN2- )2 (-19.5- 541> - a.zz'q)} (27)

T.*=— -ﬂ_

XY
= —Ex R{- 3.22 (4= )= & anin= (Y1) (-1308Y)

+ 8NN )(- 19.5 - 6574 ¥*- 3.22 7)} (28)

The results of the calculation are presented in Fig.% . It is seen
that only the direct stress in the span-wise direction or 0% is large. This
is to be expected as the large temperature changes in the chord-wise direction
would require large changes in the span-wise expansion along a chord. But such
large variations are prevented by the continuity of the meterial in the span~




wise direction. This explains large values for the span-wise direct stress.
Kear the leading edge and the trailing edge, where the temperature is high,

the material tends to expand more than allowed, thus O is negative or com-
pressive. Near the mid-chord, the temperature is low; thus the material tends
to expand less thar allowed, the O% is positive or the stress is a tension.

Of course, at the wing tip, § = 1, the direct stress 0’ has to be zero; there-
fore Oy must decrease as '§ increases from § = O to '}y = 1. This decrease is
however rather slow for small values of § . Hence, the tip effect is limited
to a rather small region.

It should be noted that the above result is obtained without any
assumption as to the values fo E and € . In fact the stresses are directly
proportional to the product E® . The only other explicit parameter is the
aspect ratio R of the wing. However, one must bear in mind the effect of
scale on the heat transfer and thus the calculated result is not strictly
aprlicable to wings of other dimensions. The influence of R can be easily
calculated by going back to (22).

BENDING DEFLECTIO:

Having calculated tre plane stress distribution, it is now desired
tc introduce it into the calculation of the transverse deflections of the
plate. To do this, the total strain energy stored in the plate as it deflects
is divided into two parts; first that due to the components of thermal stress
producing pure bending moments; and second that due to the coupling of tran-
sverse deflections and plane stress. It is the sum of these two energy compo-
nents which is then to be minimized. First the energy due to the bending
stresses will be developed.

To calculate this expression, the usual plate assumptions on the
stresses are made. These assumptions are that:

G'!,T'z‘,‘t'z« G;') o;'l‘r“’

Accordingly, the equilibrium equations and stress-strain equations
become:

(29)




(30)

where U = ey

The first, second and fourth of the stress-strain equations can be
rewritten as:

E
Ox =T-_V—“(."" -+ Vg‘ - (\*V)G'T:l

o‘.‘ = ',-E";-.[F..‘ " E,‘-u-o-v).g-r] (32)

’t',“} = G Yuy

The next assumption is that the deflection w~ may be approximated
by wi(x,¢) , the deflection of the mid plane of the plate. With this
assumption, the last two stress strain equations can be integrated directly
to yield:

W=~ 2 3{‘;',‘:
(33)

- 7, A
V= Z:‘

It can be seen that these expressions are equivalent to the usual
bending assumptions of displacement proportional to distance from the neutral
axis,
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The strain energy can be expressed as an integral:

v -S“W&-xdtiz (34)

where W is a strain energy function such that:

AW
_ 3w
% = I,
K )

Ty = Wy

Integrating the expressions and substituting for the stresses from
the stress strain equations:

W = &—‘Eﬂgta'ﬁ t‘)[(tl +* t‘)"-(\ "'V)“'a "'l(l-V*-‘::'- - Exfy (35)

But:

te=-2 33
E‘-—Z “g

V‘ = - z'z.l.;a—%:;

It is only the terms involving w in these expressions that effect
the bending strains, and hence the energy function W for bending becomes:

W s e ’{za[(v.,w,)t + zhEneT vrwr
r~v®

r A

+ a.u-v)([.,,,] ™= n} (27)
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Thus integrating this function directly with respect to Z:

™ = %“{(v&w)"a-zu-vﬂ{%ﬁ?’— g%‘i]..;uw)uav‘hr}chlg (s8)

where B is the coefficient of the linear term in (2).

The expression for the strain energy due to the coupling of plane
stress and transverse deflections is:*

Fhere: Nx = hox
N‘ = Wy
Naa- 1)) Tg’

The total energy of the plate is thus the sum of these two compo=
nents, namely:

TI'-T(. +Tra.

The eg~ilibrium position of the plate is determined by minimizing the energy
™" .

*See Timoshenko in his "Theory of Plates and Shells", pp 305.
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LUTI10. R 0

It is now necessary to assume a solution for the displacement
which satiafies the necessary boundary conditions on the edgea where
displacements are prescribed, and which contains undetermined coeffi-
cients to be determined by the variational procedure. In the case of
the cantilever plate, the only edge on which displacements are pre=-
scribed is the clamped root, and hence the free edge boundary conditions
do not ‘need to be explicitly satisfied in the form of the assumed deflec-
tion. This fact, which can be substantiated in Treffts for example*, does
not seem to be generally mentioned in well-known texts on the theory of
elasticity. Physically this is easy to understand, as a free edge would
certainly seek the position of minimum strain energy among 3]l kinema-
tically possible forms of deflection. This situation is of fundamental
importance, because it is the satisfying of the free edge boundary condi-
tions which makes the solution of the cantilever plate problem difficult
to obtain by other methods. A form of the deflection which meets these
requirements, and which will be used in the variational procedure, is as
follows:

wafateny] « et PN+ [Ge 5, 0] @)

Then the second group of terms represents the change in angle of attack of
the section and the third group of terms represents the change in the curva-
"ture of the section. Introducing this expression, and the previously
calculated O . 0% , Anp 1.',“, into the strain energy expression, and
assuming that:

Yo = 2. ™

&=0

where the d‘ have to be determined from the given temperature distribution:
s 2 a
gg%{[u. +240,b, +24b ' +f a,a; +~ 8b,ay
+ 8bya, +16bby + 8 Ay + Basby, + Bby +&5a;

+2Fras, + 32 b}] ...*R"[i}n.,q., +i12beay +4a,by

#Treffts: Mathematische Elastizitatatheorie. Handbuch der Physik,
Vol. 6, Kap. 2, PpP. 66,' (19282)
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AL RS L N I RN
+%eaby + %od] + 20-RMHal +cane, « Yl

+3 el +l§aby +f6) — a0, - Cbay,— 22,0,

-nd
—aFy, b,] + z.(n-v)o(z:\.‘ -‘-_,*T:-_T‘- (za, +2 h\)
Ase

-l a4
“‘L{"-l (204 +3bg) + -—%(3&-»3 +al"+n"4.)¢.,

+ “H"l (GA,+3+3!" R"*-)B]}
+!§-{n.:-(|.zz/\. +.406A2) ~a,b, (24, + 0.8A1)

+b((9A, +.415 AJ + q..q.,(\.o:u A.-—.ucsA.)
*abal=1.06A,—. 1422 A) + agh, (- 1.061A, —.42774,)

4 b,by (7434, —.2955A,) +al (1.20A, +.2105A4)
+°4\=..(\.0ch.+ .4:.'7A,,) - b’:(\.\uA. .21 A.,)

+a3(1.578A,~.031A) + agby(-1.626A,~ .1626As)

+ b3(LRe8 A, + . 163AL) + aj3ba (—.091A))

+ bybs(-.03s A.s)}> (44)




.——t

~Ih¢ﬂl1a?u:-‘3 3 S= \VL

from the plane stress calculations .

As g copcrete example, the wing considered in the Section on
plane stress will be used again. From previous temperature calculations,
. the coefficients in the expansion for B/, are as follows:

Ny = — L40 R, =—"785
R, =— 5.6 "Ry = 355, 6
Ry = =554 e = 1569

Rg =— 304

Assuming the wing is made of steel, introducing a value of K= 6.28 u\o",
1'Z 3 .S‘nnd a value of R 8 3, the equation becomes,

5“’-{}“ =[|u.o{sg," S* - 24a,b,8* +- 24b" S* +19.73 a.ag S
+404 b agS" +18.8b3a,8" + 42 b, b st
+363a%s* +83.6a,p,S" +53.3 by &
+944 a3 s* +191.9a,b,5* + \62.4 by s*

—.00255h (2, +3b) — .000/96k(2ay + 3b,)
- ,017"2 AGag —, 0i1297h 53}
“'{-SO-SQ.""— 91.32a, b, ~45.02 b2 . 5. 99 a, a3

+3c1a,by +48.M0a3h, + 4.80 b, by




_

—3%.52Q, —48.70 a, b, — 40.7¢ b

—28.76 03 + 42.892 a3by ~ 34,17 &

*+ 1775 a3, +2.155 b, b,}] («6)

Combining terms, this becomes,

&
stan = (12,980 8 — 50.3)at 4+ (38,300 5'~ 81.32)e, 4,

+(28,200 S*— 4 5.02) - +(31, 9505~ 5.79) a, a,
+(65,500 8"+ 48.70)b,a, + (30,430 5% + 30.) b, a,
+(68,0005* + 4.00) b, b, + (58,750 5*- 39, 5)as
. +(85;6008*~ 49,700, b, + (86,300 8%— 4a.7¢) 1L
+(153,300 S*~ 28.78)a} + (310,500 s* +4z..sz)o.,b,
+(263,0005% 34.17) &} +(1719) a,p,
+(2.155)ba by — 4.127h (2a, + 36,)
= 3175 h(2ay +3b) — 27.9hay — 2/.0 h b,

: (4-7)




—

Differentiating this expression with respect to the coefficients gives the six
equations to determine the O, b, ano C; :

(l!’, 9605~ 100. G)o.. + (38,900 s$t. 9,.22) b, + ('M,SS'OS'-J.'IQ)C'

+ (30,4308 +30.)b; = 8.254h
(38,9005~ 81.32)a, +(77,8005*~ 4 502)b, +(65, s005*+48.a,

+(68000 3% + 4.80)by = 12,38 h

(117,500 8* - 79.04) 2y +(135, 500 8*— 42.7)b, =.635h

(135,500 S*~ 48.7)a, +(172,6008*-81.52)b, + 1.775 a, (+9)
+ 2.155by=_.9526h

(31,9505 — 5.79)a, +(65,600S* +4¢.7)b, + 1,115 b,

+ (306,000 S™~ &7, 56)ay +(310,5005* +42.82)b, = 27.9 h
(30,4308" + 30.1)a, +(68,0005% + 4.80) b, + 2.155 by,

+ (315,500 8% + 42.82) 0y +(526,0005%-68.34) b, =21.0h

As yet, no assumptions on the geometry of the plate have been made
. other than R = 3. The expressions for the temperature distribution, however,
were derived for a particular chord and thickmess ratio, and presumably would
be different for other sections. The values used in the temperature calcula-
tions were:




h= 0.22 Fw.

L=2.75 F+

Since R has been specified as 3,then L z 8.25 ft, and hence S & .0267. For
these values, the coefficlents satisfying the six equations are:

Qm —~, 040853
B, = ,0328

Qy=m 00118 (49)
b,= . 002738

by,= .co853

Hence, the deflection Wr in feet becomes:

w -‘_—. 0405 3\ +.0328 \’] + [.oona \‘+-°°"~""]"l

+[.oosu" ) & -t-.oo‘as's!‘]"l" (50)

A plot of this calculated deflection is given in Figure 6. It is
seen that the deflection 1s greatest at the wing tip. However, even at the

wing tip the deflection is quite small. The significance of these results
will be discussed in a later Section.

OR

The procedure developed in this work is applicable to wings of
. variable thickness provided that several modifications are made. The only
changes involve different limits of integration in the expressions for the
various strain energies. In all cases, the thickness h(%,94) must be left
. anside the integral when integrating with respect to x, and y. The modifica-
tions are as follows:




rllIIlllI------------------------

Equation (18) becomes:

veie{[nmo{en. + ohy - 2 80 Jaxdy Gee)

Equation (38) becomes:

T = fﬁsg(ﬁaﬂl [vea)* + 2¢1em o o

+ 20=-V)(wiy = Wiy vu)]} dxdy (38a)
And equation (39) becomes:
" 1_.,;-_ N R \>
o= (] e (o (3EY + A
+’.Tu‘ (ﬁ )(%%)} Jd.¥ oy (394)

Using these modified expressions, the rest of the procedure may be
carried out exactly as in the case of the constant thickness wing.

G ONCLUSIONS ON THE LE (¢)

For a wing of thickness equal to 0,22 ft.2 chord 2,75 ft., accele~
rated at an altitude of 50,000 ft., 100 1lbs per ft.< loading aid 1 Mach number
every 30 seconds, the deflections due to aerodynamic heating at Mach number 6
are given in Table 1 for various values of the coefficient of linear thermal
expansions and aspect ratios. The method used in making these calculations 1is
explained in the previous Sections. This Table also gives the changes in the
aerodynamic coefficients of the wing due to such deflections. The aerodynamic
coefficients are calculated by using the simple Ackeret formulae* for thin wings.
It is seen that in all cases the change in the aerodynamic coefficient are small.

Therefore, the results of the present analysis indicate that the
deflection and the effects of deflections due to aerodynamic heating on the
aerodynamic performance will, in general, be small.

This conclusion is further strengthened by the following observations:

1) The calculated deflections and the effects of deflections are inde-
pendent of the Young's modulus. Therefore, the decrease of Young's
modulus at high temperature of the material will not influence the
results of calculation,

* See Appendix II
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2) At higher temperatures, the Young's modulus will be decreased.
Then with a given aerodynamic loading, the deflections due to
this serodynamic load will be increased at higher temperatures.
Therefore, at the high temperature caused by aerodynamic heating,
the deflections due to the aerodynamic loed will be much larger
. than the deflections due to non-uniform heating.

3) 1If the aircraft is flown at a much higher altitude, the lower
air density will greatly reduce the rate of heat input to the
wing. Then the non-uniformity of temperature distribution over
the material of the wing will be greatly reduced. This will in
turn greatly decrease the importance of the deflections due to

aerodynamic heating.
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FIGURE 1|1
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A wing is assumed to accelerate at a constant rate starting from
steady flight at some supersonic Mach number. The adiabatic wall tempera-
ture vhich acts on the surface of the wing is thus a function of time, and
a non-steady state heat transfer problem arises. It is assumed that there
is no heat flow in the spanwise direction of the wing, and thus the problem
is a two dimensional one. The coordinate system used on the section is as
shom in Figure 4.

T’?is 3‘%7 7”'3/&

The differential equation of heat transfer for this system is:

T T 4 2T
? 2 + Y oL o0

T . ¥*T h" 2
on, ——;3'_ + &T L i

Y y

'Y
Since ® I’a!" and /;-.l“ are of the same order of magnitude,

for small values of ¥ :

T
4t S < ¢

Hence, assuming that 4t ‘..T/;-\“- is negligible, the differ-
ential equation becomes: '

N L 3L
Y A K o
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which is the one-dimensional equation.

Boundary conditions: The plate is assumed to be insulated at the surface
2 = 0, and heated according to Newton's law at the surface z h . At

time @ 2 0, the temperature is assumed to be identically sero. Thus the
. boundary conditions are:

e =0 T =0

Z=o : g=o0

K%= hl(-rur—‘_r)

It is believed on the basis of experimental data that the surface
coefficient of heat transfer, and the adiabatic wall temperature can be
approximated by expressions of the form:

“yK = Q. + be-
Taw = CO + do*
where a, b, ¢, and d are constants
With these two expressions, the boundary conditions become:
© =0 I+ T=O0

Z =0 3"}a

z=-°
Z = h

7z =(a+be)(ce +do*— T)

The Laplace transform operator is now applied to both the differ-
ential equation and the boundary conditions. The operator is defined as
follows:

L{tte2)} = §:— *fle;2)de = §(n2)
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The result of this operation 1is:

d*T £
-I%'TT = Tewe =0

zah-,%:% +"_'S&£$*_;.‘°_°l +5_1§I~._!¢.

— aF T
T -c-b;‘,

The equation has thus been transformed to a second order total differential

equation whose most general solution is:

T = A(F) coul 7 + B(r)ainl 9,2

where: Q =\

The first of the two boundary conditions determines that B = O,

and the second yields the following first order differential equation:

Or, writing everything in terms of %:




[ _J
! -(am+)Bh
But , Tkh =2y C0"e

Now, let  A(%) = ic—n“ B.(a) e~ (2r+ ) %h

"hEo

and the differential equation becomes:

[ )
:‘_one-(za+')$h{‘% —(2n+)h B, + [h'lz,J. oh

s

- A%% g — 24T AL %u]a-.,}

=_Z( ™ -(i-mﬂ)‘bh.{4-mc‘ + 8lad +bo)

2n+l
or, equating coefficients of -\ ( Yoh

3‘3&*-[“.&“—"“‘% 249t o f g b ~(xn+)A] By

.%




The homogeneous solution to this equation can be obtained directly in the
form of an integral:

S{EE! % +(anedh+ L?‘u“ - Whh %k} dy

B‘u = K e
o R R -y LW RN Y
= +<¢=3-

As p approaches infinity, the Laplace transform of the temperature
must approach zero. This can be seen by the following analysis:

T o Lom S:e"" T(e) doo

L= oo

Yo . L
- S e~ Tde -+ L_:n’; E e~T* Tde
° - e

= M + N

The temperature T is bounded by the adiabatic wall temperature at
all times. Hence:

TE co + de*

and for 0k &%y 1 e " <1 , T §p + &

.#CQ-AL . e P g e“ﬁ', TS cL +d




_

Hence, by the theorem on upper bounds of integrals:
: M& (K + %) (4p) = 7 + Ve

. N £ &[(L— Se)cu + 4 t) e‘w]

& If p 13 now _allowed to approach infinity, the products \_ €& W
‘e ,and L3 e-W  approach zero, and Yp , Vp¥aapproach gero.
Hence both K and N approach szero, and:

Liw T = Lwm Acekqz =0

P =00 P=s 00

S
The homogeneous solation of B however contains a factor of e"'
This factor produces a contribution to 4 of the form:

| 8
Aw = D eam fin) el¥ - (ane rhe]

- nue

=5 e g grle-tne g

nae

where B(s) does not approach zero when P becomes infinite.

But this contribution becomes infinite when P becomes infinite, and hence
contradicts the requirement that A approach zero. Thus, the coefficient K
of the homogeneous solution must be zero. The particular solution is found
by the method of variation of parameters. A solution is assumed in the form.

B., = $ta) e’

When introduced in the differential equation, the function f is expressed
- as a quadrature,




o gm-feT(Ee ¢ BATE + Whle

If this expression is integrated by parts repeatedly, an asymp-
totic expansion for f is determined, which contains increasing negative
powers of % . This expansion is as follows:

44t ed +b 244 Slad + qd
§= e'T{["-'s' LIRS LS sy RSV J_\

Fe
Vaq % “Vaq,

4t \3%, & s,
- L L $. 4 + 8(ad+ ‘1
} § eJ{@« * [‘":n “<' o (ﬁi‘ T s )>‘ﬂ e

ﬁ=(z£¥ —h)td b + B8R q 4 (2n+i)h

vl 4y ] e - -a—%)]>.,}
%

[ad
But: TamA h = | + 7.2 - e Am%h

mui




Hence: -&{ - ”;i + ‘% % +2nh 4+ (-‘%&;— Lk)f}‘.‘)"‘e—l‘-sh

may

\
The factor ¢ ﬁ can now be expanded in inverse pow
Q » to yleld: powers of

'/ﬂ-.—. —',e_{-:a[l-r 2e~teh Lz emth 4 g e"‘"f..“.:l}
-%e -',':-E[n-«- et L ge vk 4 12 e-C%h +-.-T§

atb - - \
+-‘1—.¢{“ V+ 6 2%h L 1ge e | age-Suh +---]

R
";'TE'.[% + (An-u-l)e'“" +Lun)e""“ +02nes)e S, .:J}

v {a3b ~2%h -4%h = ¢%h ..
—? . I+ 8¢ + 328 + 88e + ]

-h%[s\. +(En+i) e tTh +Usnes)E YO ¢ (3en+ |3)e“""2,.___]}
Py
*"‘C‘{%&'Y_‘* oe 2% + soe~ Tk Limgeméha ]

218
- -M Y E" +n+)E % o (2 +'1)e'“'\-\-(lh. -o-zs')e'“i'...l
1,3 .
+a-.-h£w" +* a.n.(:u.-n)e‘"'"" +(18%* +lon+) & 4%k

+a(iad s i3n+a)e” Coh ---]\ -t~
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Introducing this into the expression for £(%) , and arranging
terms in order of negative powers of % , the expression becomes:

. Bus Bay +Bup = Bup = f(u)e7

. -.--t.{-%.%[u- R e X PP Ll L +-'°]}
{a.a.c[\ +aeiSh L gemth L 2~ 6$k+‘__‘l}
+-'? [\ reetth gtk L sge-tet -0-"-']
+ﬁ_;2:-) Veaet®h g ettt W e |

+a.(ab¢ +4ad) 2% b - -6
— [‘.*4‘ *h 4 ge~*%h 4 126 """-t----]

4'"—3_"' be "'En.-t—(&n.*-#) A% v A e "™ L(aga +19)e* +--]}

+J"\? "}' 1102 | soe-4th 4 170e S%h -v-"']

+ ) lv2e 2%h L 2e 4%k 4 2 em O +--~]

: —ﬂc.d.;-:c)bk n (A e DEV o (n ) €V (2w 026) %S __}
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"—ﬁr-bﬁb.[an-r(amu-w) e 1hh +(8i1n -+ us)e"“'“q- (n6on + ages%h .

-y

! I..!I. =£%h
+ ‘fx‘ E""-'-(Gu"-o-tu)e"""-r(wn"-r 46n +7)e'“‘3r(’h"+'4“ $30)¢ "

R ~\ 6%
+ 5[+ (30 e+ (w0 ) 0 o (370 42N ]

+ 424 - - oy .-
o || +¢e 2% 4 ke sl'-t-.sae SR | B

T= i%‘.z‘ Bu[ﬁ"quﬂ)k-‘) - a—%({zn-o-m-. + 'b]

nse

and making use of the inverse Laplace transform:

L) = o (ST

= KV (ao) T LM TR

The following expression for the temperature is derived:

T"ZZ C“n(4‘)‘va.[‘_"- r.(z.n-!-l-‘ﬂ + L"‘--ojc.r.(zmﬂ-t-‘s\]

MO B3

W
where } = 2Nee
S = 9,
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and where the coefficients C e , are:

Cos = ac VT ‘ Coe = —atcut
) Cis = eV Cie = —9tcx
. Cas = ae v Caa =—JFalcu
Cis = Qecv Cye =—7acx

Cosy = @Pcx™ + 2(ad + L)W
Cisg = 5% + 2(ad +LOYT — 2 a.be hVX"
Cap =18a%Cco™ 42 (ad +b)YX' ~6abe h i’
Cas =25 alcaaVr + 2(ad + b)Y - 14ame hyT
Co¢ =-Cco*~2(ad +be)an — G abeot
Cle =7 cu* - 6(ad +bc)an -S4 abexX + 6atbchn
Cae = ~25 P cx* ~/0lad+bc)an - % abexX + 3oatbe A X
. Cgs = —63a"cx® ~30(ad +beyax~— 745 a.bex + S0a*behx
Con = aSCxPr 4 2({ad+be)atu ¥ 4 1 atbc ¥ +6bdVT
Cip = 8¢ cx +io(ad +batu¥e + 5% atbeu¥ + 6bd VT
—a(ed+be)bhV — 1200 beh ™ ~ 2act h* V&
Cay = 41a¥cx™ 26(ad+ bOatux¥r + 43, a*be e + 6bdvET
—12(ed +b)bhVn' — 80 beh a2 — Gac B A 'y
Cyp = 1287 cx? + solad+be)abux + 23 atbe o 4 6hdNK
~28(ad +b)bh " — 348 a?beh a¥® — 12 ack R VT
C,p = - dbco’ - 2,(ad + be) Pu™ = ' QPbex™ - 6abd ol - Tad +bc) bt
. Cog = ATCXW + 2(ad +60)fu T + 2ég e + gabd Vi

16 (ad +bc)abxVa + 10atbe xVa




Coo™— alcx— 2(ad + be)a"x P~ 3% of bew - ¢ ated x*
- 24-(od +he)a bo® - PV atblc xr - 27 6%d %

Co. = aTcx¥ 4Z(adréc)abuc¥ + *% albex™ + 6a bl
+34lad+bC) b + 3V, b cxh + 57 b d o Vo
+ 35(ad + bc) bruc M

=~ a'cul—2(ad + bc) A'x* — TH a' bco* - g aT b o

—40(ad +bc)atbu?® — $°% a*brc ® 3= 75 a 6" dx*

Cosz

— 2% (ad + bc)abtnt -~ 45 Cc?

As a check on this result, numerical calculations have been made
for two points, and compared with results of a relaxation procedure. The
series was found to converge very rapidly with respect to m, but not very
rapidly with respect to n. The convergence is improved greatly at smaller
values of @-. The calculations were made for the following set of condi-
tions;

Acceleration = 1 Mach number per 30 seconds starting from
M, =1.4
(-]

909 1/ft
136.3 1/ft -hr

26,200 OF/hr
776,000 OF /nr?

0.20 ft

.32 £t2/nr
1

AR 7 oo gp

For € = .0383 hrs, or M = 6:

ATm Te —=T,,,= 660 °F
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For ©= = ,02165 hrs, or M = 4:

AT = 160.§ °F

The relaxation procedure gives values of 672 °F, and 168,.5°F respectively
for these conditioms.

N | AT calculated ATrelaxation % difference
4 160,50F 168.5°F 4.75
660°F 672°F 1.79

These percentage differences are within the error of the finite
difference procedure, so that this should serve as a valid check on the
analytical procedure.
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AEFENDIX 11
CI_OF DEFLECTIONS ON AFI OEFFICIENT

In this appendix, the changes in aerodynamic coefficients due to
the thermal deflections are calculated. The work is based upon the Ackeret

thin wing approximations, i.e., the flow around every chordwise section of
the wing will be considered as two-dimensional and the effect of the tip in
reducing the fluid preasure will be neglected. For the configuration shown
in figure 11, the Ackeret formulae for pressure coefficients on the upper
and lower surfaces of the wing are as follows:

Ce= ; E'Pu"

Cre = yefemr 42

d
Cn-—.‘,—nf—f-rt%

W 2K (R+ )+ w = W2

1= Xo(L+Y) +w =Ny

But, = AY) + BB + Cly)qt

vhere, A(V) = a,Y* « b, y?
B(Y) = o, 2 + b, }?

C(Y) = a3t + by




Hence:

Coe—Cou =ﬁ?;'(% - %)

- i s B+ 209

+ coe ent

C, = —lIET
R et Ut(20)4

|
=TT | (AR Ly

| 2
= '{[S“(cu - CP&)‘L*

2

) 3
b T R DR

= Yormr (% + %)
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4. Moment coefficient

C - NosE Us Mengnr Ascsr Mivauors

. Yo ° U* (22)* -1

= - S‘(c - Cru)ed
L L X
)" | o . Pu
|
= &g (e + By + 2C¥)
l‘vn"-— B 4%)dy

=i (%acy)

= __4C

31'7 ™ME—

3. Drag coefficient
Dn
Ca= Vu':n.:(u)
 §
= 7 S_‘(’l&sf - P %)d.;

|
= i’!’g (Cot — Cou)ke + ¥ + zc%t)cl;
-2

]
=ﬁ"ﬁ?$§,_(“' + g+ 2Cyp)dy

= T%[&%Qz+ %o + l':"i]-]
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4a_Average® 11f% coofficient
)
c =1 Cay

i
= e [ g+ M)y

= ﬁ? (“o gl q"/sl +*- b‘-/4.l)
= ?Mhs_"(**‘ - %2 Szh )

3, "Average moment coefficient
1
Cu = {_Cwmdy

= o [ Saavt + avyay
= st (M + )

- 223 +~ 3 b!

6, " e" dr fficient
]
Co= Soc‘ 4y
4 '
’mg,{i‘[ﬁ\‘ +2a.b W+ by 4 +Yal ¥t + Hau v
+4 b3 3‘] + oty + ﬁiﬁ![o.;\' + L,“]}J.S
(kD% abng + 5y + iy ey
X
« %] el « ga[agr + 5]}




. 2.

ror W/s = 100 #/212
Olg = .0242 redians
A sample calculatigx will now be made for the case of a wing of

» Re3, and O = 6.28 x 10™°, Résults of calculations for other wings are
tabulated in table & .

" Q.q = .00118

by = .002738

Q3 = .00885
b‘ = .00853
Hence: C, = 'ﬁ.{ﬂ. o242) + _4(-n||;{’:3£3°ozvaa) '}

,,,_{ 0868 «+. ooussa}
= .016861
Co = %(.00088) + 3(.00853)
] - 9(z2.75)( 7. 32)
= , 000418

-t {_U- == (.00 uﬂ" (.ooulx: ce2738) (.u:‘ﬂtf‘
+ Hooses) 4-5.“:_-_.%.«:") N 4;.«:::)"'1
FN

\5

& u. .00%738
+ (.o242)* + :;;-’[" 5 — ]}

=,676 { 000008937 + .000588 + . 0000 wo}

= ,0004.\§5




 .s.

The perocentage changes of 1ift and drag coefficients are defined
ass
undeflected coefficient x 100

\
, SmmCL-%}PIIODCI.GZ%

. 83 .
L emnuc, - smean s

= 4. .84 7
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